Predictive heuristic control: Inferring risks from heterogeneous nowcast accuracy

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
27 Downloads (Pure)

Abstract

Urban Drainage Systems can cause ecological and public health issues by releasing untreated contaminated water into the environment. Real-time control (RTC), augmented with rainfall nowcast, can effectively reduce these pollution loads. This research aims to identify key dynamics in the nowcast accuracies and relate those to the performance of nowcast-informed rule-based (RB)-RTC procedures. The developed procedures are tested in the case study of Rotterdam, the Netherlands. Using perfect nowcast data, all developed procedures showed a reduction in combined sewer overflow volumes of up to 14.6%. Considering real nowcast data, it showed a strong ability to predict if no more rain was expected, whilst performing poorly in quantifying rainfall depths. No relation was found in the nowcast accuracy and the consistency of the predicted rainfall using a moving horizon. Using the real nowcast data, all procedures, with the exception of the one predicting the end of the rainfall event, showed a significant risk of operative deterioration (performing worse than the baseline RB-RTC), linked to the relative performance of the nowcast algorithm. Understanding the strengths of a nowcast algorithm can ensure the reliability of the RB-RTC procedure and can negate the need for detailed modelling studies by inferring risks from nowcast data.

Original languageEnglish
Pages (from-to)1009-1028
Number of pages20
JournalWater science and technology : a journal of the International Association on Water Pollution Research
Volume87
Issue number4
DOIs
Publication statusPublished - 2023

Keywords

  • Combined sewer overflows
  • rainfall forecast
  • real-time control
  • risk assessment
  • urban drainage systems

Fingerprint

Dive into the research topics of 'Predictive heuristic control: Inferring risks from heterogeneous nowcast accuracy'. Together they form a unique fingerprint.

Cite this