Probing the gravitational redshift with an Earth-orbiting satellite

D.A. Litvinov, V.N. Rudenko, A. V. Alakoz, U. Bach, N. Bartel, A. V. Belonenko, K.G. Belousov, M. Bietenholz, A.V. Biriukov, R. Carman, G. Cimó, C. Courde, D. Dirkx, D. A. Duev, A. I. Filetkin, G. Granato, L. I. Gurvits, A.V. Gusev, R Haas, Gert HeroldA. Kahlon, B.Z. Kanevsky, V.L. Kauts, G. D. Kopelyansky, A.V. Kovalenko, G Kronschnabl, V.V. Kulagin, A. M. Kutkin, Maria Lindqvist, J. E J Lovell, H. Mariey, J. N. McCallum, G. Molera Calvés, C. Moore, kt Moore, A. Neidhardt, C. Plötz, S. V. Pogrebenko, A. Pollard, N.K. Porayko, J Quick, A.I. Smirnov, K. V. Sokolovsky, V.A. Stepanyants, J. M. Torre, P Vicente, J. Yang, M.V. Zakhvatkin

Research output: Contribution to journalArticleScientificpeer-review

23 Citations (Scopus)


We present an approach to testing the gravitational redshift effect using the RadioAstron satellite. The experiment is based on a modification of the Gravity Probe A scheme of nonrelativistic Doppler compensation and benefits from the highly eccentric orbit and ultra-stable atomic hydrogen maser frequency standard of the RadioAstron satellite. Using the presented techniques we expect to reach an accuracy of the gravitational redshift test of order 10-5, a magnitude better than that of Gravity Probe A. Data processing is ongoing, our preliminary results agree with the validity of the Einstein Equivalence Principle.

Original languageEnglish
Pages (from-to)2192-2198
JournalPhysics Letters. Section A: General, Atomic and Solid State Physics
Issue number33
Publication statusPublished - 2018


  • Atomic clocks
  • Equivalence Principle
  • Gravitational redshift
  • RadioAstron


Dive into the research topics of 'Probing the gravitational redshift with an Earth-orbiting satellite'. Together they form a unique fingerprint.

Cite this