Probing universal critical scaling with scan density matrix renormalization group

Natalia Chepiga*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

We explore the universal signatures of quantum phase transitions that can be extracted with the density matrix renormalization group (DMRG) algorithm applied to quantum chains with a gradient. We present high-quality data collapses for the order parameter and for the entanglement entropy for three minimal models: transverse-field Ising, three-state Potts, and Ashkin-Teller. Furthermore, we show that scan-DMRG successfully captures the universal critical scaling when applied across the magnetic Wess-Zumino-Witten and nonmagnetic Ising transitions in the frustrated Haldane chain. In addition, we report a universal scaling of the lowest excitation energy as a function of a gradient rate. Finally, we argue that the scan-DMRG approach has significantly lower computational cost compare to the conventional DMRG protocols to study quantum phase transitions.
Original languageEnglish
Article number144401
Number of pages11
JournalPhysical Review B
Volume110
Issue number14
DOIs
Publication statusPublished - 2024

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Probing universal critical scaling with scan density matrix renormalization group'. Together they form a unique fingerprint.

Cite this