Problem of equilibration and the computation of correlation functions on a quantum computer

Barbara M. Terhal, David P. DiVincenzo

Research output: Contribution to journalArticleScientificpeer-review

23 Citations (Scopus)

Abstract

We address the question of how a quantum computer can be used to simulate experiments on quantum systems in thermal equilibrium. We present two approaches for the preparation of the equilibrium state on a quantum computer. For both approaches, we show that the output state of the algorithm, after long enough time, is the desired equilibrium. We present a numerical analysis of one of these approaches for small systems. We show how equilibrium (time-)correlation functions can be efficiently estimated on a quantum computer, given a preparation of the equilibrium state. The quantum algorithms that we present are hard to simulate on a classical computer. This indicates that they could provide an exponential speedup over what can be achieved with a classical device.
Original languageEnglish
Article number022301
Pages (from-to)022301-1 - 022301-22
Number of pages22
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume61
Issue number2
DOIs
Publication statusPublished - 2000
Externally publishedYes

Fingerprint

Dive into the research topics of 'Problem of equilibration and the computation of correlation functions on a quantum computer'. Together they form a unique fingerprint.

Cite this