TY - JOUR
T1 - Propeller and inflow vortex interaction
T2 - vortex response and impact on the propeller performance
AU - Yang, Yang
AU - Zhou, T
AU - Sciacchitano, Andrea
AU - Veldhuis, Leo
AU - Eitelberg, Georg
PY - 2016
Y1 - 2016
N2 - The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as blade–vortex interaction or BVI. The interaction may affect the propeller performance as well as its noise production. In the present paper, investigations of the interaction of a wing tip vortex generated by a lifting surface upstream of the rotor plane and an eight-bladed propeller are reported. Utilizing two ends of an upstream wing with non-symmetrical airfoil, the rotation of the incoming vortex could be made to co-rotate or to contra-rotate with the propeller. The ensuing velocity fields were quantified with the help of particle image velocimetry (PIV), and the propeller performance was evaluated with the help of a rotating shaft balance (RSB) mounted on the propeller shaft. The results describe the displacement of the vortex core, as it moves through the rotor plane as well as the positive effect on the thrust and torque of the contra-rotating vortex and the opposite of it in the case of the co-rotating vortex. The current research could be applied to analyse the influence of the incoming vortex on the propeller, e.g., ground vortex, tip vortex shed from a control surface, etc.
AB - The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as blade–vortex interaction or BVI. The interaction may affect the propeller performance as well as its noise production. In the present paper, investigations of the interaction of a wing tip vortex generated by a lifting surface upstream of the rotor plane and an eight-bladed propeller are reported. Utilizing two ends of an upstream wing with non-symmetrical airfoil, the rotation of the incoming vortex could be made to co-rotate or to contra-rotate with the propeller. The ensuing velocity fields were quantified with the help of particle image velocimetry (PIV), and the propeller performance was evaluated with the help of a rotating shaft balance (RSB) mounted on the propeller shaft. The results describe the displacement of the vortex core, as it moves through the rotor plane as well as the positive effect on the thrust and torque of the contra-rotating vortex and the opposite of it in the case of the co-rotating vortex. The current research could be applied to analyse the influence of the incoming vortex on the propeller, e.g., ground vortex, tip vortex shed from a control surface, etc.
KW - Vortex flow
KW - Blade vortex interaction
UR - http://resolver.tudelft.nl/uuid:1f805245-b5be-4c0d-a4c9-e2d3278787e8
U2 - 10.1007/s13272-016-0198-z
DO - 10.1007/s13272-016-0198-z
M3 - Article
VL - 7
SP - 419
EP - 428
JO - CEAS Aeronautical Journal
JF - CEAS Aeronautical Journal
SN - 1869-5582
IS - 3
ER -