TY - JOUR
T1 - Proteobacteria become predominant during regrowth after water disinfection
AU - Becerra-Castro, Cristina
AU - Macedo, Gonçalo
AU - Silva, Adrian M.T.
AU - Manaia, Célia M.
AU - Nunes, Olga C.
PY - 2016
Y1 - 2016
N2 - Disinfection processes aim at reducing the number of viable cells through the generation of damages in different cellular structures and molecules. Since disinfection involves unspecific mechanisms, some microbial populations may be selected due to resilience to treatment and/or to high post-treatment fitness. In this study, the bacterial community composition of secondarily treated urban wastewater and of surface water collected in the intake area of a drinking water treatment plant was compared before and 3-days after disinfection with ultraviolet radiation, ozonation or photocatalytic ozonation. The aim was to assess the dynamics of the bacterial communities during regrowth after disinfection. In all the freshly collected samples, Proteobacteria and Bacteroidetes were the predominant phyla (40–50% and 20–30% of the reads, respectively). Surface water differed from wastewater mainly in the relative abundance of Actinobacteria (17% and < 5% of the reads, respectively). After 3-days storage at light and room temperature, disinfected samples presented a shift of Gammaproteobacteria (from 8 to 10% to 33–65% of the reads) and Betaproteobacteria (from 14 to 20% to 31–37% of the reads), irrespective of the type of water and disinfection process used. Genera such as Pseudomonas, Acinetobacter or Rheinheimera presented a selective advantage after water disinfection. These variations were not observed in the non-disinfected controls. Given the ubiquity and genome plasticity of these bacteria, the results obtained suggest that disinfection processes may have implications on the microbiological quality of the disinfected water.
AB - Disinfection processes aim at reducing the number of viable cells through the generation of damages in different cellular structures and molecules. Since disinfection involves unspecific mechanisms, some microbial populations may be selected due to resilience to treatment and/or to high post-treatment fitness. In this study, the bacterial community composition of secondarily treated urban wastewater and of surface water collected in the intake area of a drinking water treatment plant was compared before and 3-days after disinfection with ultraviolet radiation, ozonation or photocatalytic ozonation. The aim was to assess the dynamics of the bacterial communities during regrowth after disinfection. In all the freshly collected samples, Proteobacteria and Bacteroidetes were the predominant phyla (40–50% and 20–30% of the reads, respectively). Surface water differed from wastewater mainly in the relative abundance of Actinobacteria (17% and < 5% of the reads, respectively). After 3-days storage at light and room temperature, disinfected samples presented a shift of Gammaproteobacteria (from 8 to 10% to 33–65% of the reads) and Betaproteobacteria (from 14 to 20% to 31–37% of the reads), irrespective of the type of water and disinfection process used. Genera such as Pseudomonas, Acinetobacter or Rheinheimera presented a selective advantage after water disinfection. These variations were not observed in the non-disinfected controls. Given the ubiquity and genome plasticity of these bacteria, the results obtained suggest that disinfection processes may have implications on the microbiological quality of the disinfected water.
KW - Ozonation
KW - Photocatalytic ozonation
KW - Selective advantage
KW - Surface water
KW - UV radiation
KW - Wastewater
UR - http://www.scopus.com/inward/record.url?scp=84983651729&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2016.08.054
DO - 10.1016/j.scitotenv.2016.08.054
M3 - Article
C2 - 27570199
AN - SCOPUS:84983651729
SN - 0048-9697
VL - 573
SP - 313
EP - 323
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -