Pure-rotational 1D-CARS spatiotemporal thermometry with a single regenerative amplifier system

Leonardo Castellanos, Francesco Mazza, Dmitrii Kliukin, Alexis Bohlin*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

19 Citations (Scopus)
33 Downloads (Pure)


We report spatiotemporal pure-rotational coherent anti-Stokes Raman spectroscopy (CARS) in a one-dimensional imaging arrangement obtained with a single ultrafast regenerative amplifier system. The femtosecond pump/Stokes photon pairs, used for impulsive excitation, are delivered by an external compressor operating on a ∼35% beam split of the uncompressed amplifier output (2.5 mJ/pulse). The picosecond 1.2 mJ probe pulse is produced via the second-harmonic bandwidth compression (SHBC) of the ∼65% remainder of the amplifier output (4.5 mJ/pulse), which originates from the internal compressor. The two pump/Stokes and probe pulses are spatially, temporally, and repetition-wise correlated at the measurement, and the signal generation plane is relayed by a wide-field coherent imaging spectrometer onto the detector plane, which is refreshed at the same repetition rate as the ultrafast regenerative amplifier system. We demonstrate 1 kHz cinematographic 1D-CARS gas-phase thermometry across an unstable premixed methane/air flame-front, achieved with a single-shot precision <1% and accuracy <3%, 1.4 mm field of view, and an excellent <20 µm line-spread function.

Original languageEnglish
Pages (from-to)4662-4665
Number of pages4
JournalOptics Letters
Issue number17
Publication statusPublished - 2020

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


Dive into the research topics of 'Pure-rotational 1D-CARS spatiotemporal thermometry with a single regenerative amplifier system'. Together they form a unique fingerprint.

Cite this