Quadrotor fault-tolerant incremental nonsingular terminal sliding mode control

Xuerui Wang*, Erik Jan van Kampen, Qiping Chu

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

18 Citations (Scopus)
1 Downloads (Pure)

Abstract

This paper proposes incremental nonsingular terminal sliding mode control for a class of multi-input and multi-output nonlinear systems considering model uncertainties, external disturbances, and sudden actuator faults. This method is free from singularity because it does not involve any negative fractional power. The convergence time in both reaching and sliding phases are proved to be finite. Moreover, by fully exploiting sensor measurements, the proposed incremental control method simultaneously reduces model dependency and the uncertainty remaining in the closed-loop system. The reduction of model dependency simplifies the implementation process and reduces the computational load, while the reduction of uncertainty decreases the minimum possible sliding mode control gains, which is beneficial to chattering reduction. These merits are verified by a quadrotor trajectory tracking problem. Simulation results demonstrate that the proposed method has better robustness against model uncertainties, gusts, and actuator faults than the model-based nonsingular terminal sliding mode control in the literature.

Original languageEnglish
Article number105514
Number of pages14
JournalAerospace Science and Technology
Volume95
DOIs
Publication statusPublished - 2019

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Disturbance rejection
  • Fault-tolerant control
  • Nonsingular terminal sliding mode control
  • Quadrotor trajectory control
  • Sensor-based incremental control

Fingerprint

Dive into the research topics of 'Quadrotor fault-tolerant incremental nonsingular terminal sliding mode control'. Together they form a unique fingerprint.

Cite this