Quantum Dots in an InSb Two-Dimensional Electron Gas

Ivan Kulesh, Chung Ting Ke, Candice Thomas, Saurabh Karwal, Christian M. Moehle, Sara Metti, Ray Kallaher, Geoffrey C. Gardner, Michael J. Manfra, Srijit Goswami

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
50 Downloads (Pure)


Indium-antimonide (InSb) two-dimensional electron gases (2DEGs) have a unique combination of material properties: high electron mobility, a strong spin-orbit interaction, a large Landé g factor, and a small effective mass. This makes them an attractive platform to explore a variety of mesoscopic phenomena ranging from spintronics to topological superconductivity. However, there exist limited studies of quantum confined systems in these 2DEGs, often attributed to charge instabilities and gate drifts. We overcome this by removing the δ-doping layer from the heterostructure and induce carriers electrostatically. This allows us to perform a detailed study of stable gate-defined quantum dots in InSb 2DEGs. We demonstrate two distinct strategies for carrier confinement and study the charge stability of the dots. The small effective mass results in a relatively large single-particle spacing, allowing for the observation of an even-odd variation in the addition energy. By tracking the Coulomb oscillations in a parallel magnetic field, we determine the ground-state spin configuration and show that the large g factor (approximately 30) results in a singlet-triplet transition at magnetic fields as low as 0.3 T.

Original languageEnglish
Article number041003
Number of pages5
JournalPhysical Review Applied
Issue number4
Publication statusPublished - 2020


Dive into the research topics of 'Quantum Dots in an InSb Two-Dimensional Electron Gas'. Together they form a unique fingerprint.

Cite this