Abstract
Authors' abstract: In this paper we analyze the abstract parabolic evolutionary equations $$D_t^\alpha(u-x)+A(u)u=f(u)+h(t),\quad u(0)=x,$$ in continuous interpolation spaces allowing a singularity as $t\downarrow 0$. Here $D_t^\alpha$ denotes the time-derivative of order $\alpha\in(0,2)$. We first give a treatment of fractional derivatives in the spaces $L^p((0,T);X)$ and then consider these derivatives in spaces of continuous functions having (at most) a prescribed singularity as $t\downarrow 0$. The corresponding trace spaces are characterized and the dependence on $\alpha$ is demonstrated. Via maximal regularity results on the linear equation $$ D_t^\alpha(u-x)+Au=f,\quad u(0)=x, $$ we arrive at results on existence, uniqueness and continuation on the quasilinear equation. Finally, an example is presented.
[ Irina V.Melnikova (Ekaterinburg) ]
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 418-447 |
Number of pages | 30 |
Journal | Differential and Integral Equations |
Volume | 196 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2004 |
Bibliographical note
niet eerder opgevoerd sbKeywords
- Wiskunde en Informatica
- Techniek
- technische Wiskunde en Informatica
- academic journal papers
- Peer-lijst tijdschrift