Abstract
Two-dimensional layered trichalcogenide materials have recently attracted the attention of the scientific community because of their robust mechanical and thermal properties and applications in opto- and nanoelectronics devices. We report the pressure dependence of out-of-plane Ag Raman modes in high quality few-layer titanium trisulfide (TiS3) nanoribbons grown using a direct solid-gas reaction method and infer their cross-plane thermal expansion coefficient. Both mechanical stability and thermal properties of the TiS3 nanoribbons are elucidated by using phonon-spectrum analyses. Raman spectroscopic studies at high pressure (up to 34 GPa) using a diamond anvil cell identify four prominent Ag Raman bands; a band at 557 cm-1 softens under compression, and others at 175, 300, and 370 cm-1 show normal hardening. Anomalies in phonon mode frequencies and excessive broadening in line width of the soft phonon about 13 GPa are attributed to the possible onset of a reversible structural transition. A complete structural phase transition at 43 GPa is inferred from the Ag soft mode frequency (557 cm-1) versus pressure extrapolation curve, consistent with recently reported theoretical predictions. Using the experimental mode Grüneisen parameters γi of Raman modes, we estimated the cross-plane thermal expansion coefficient Cv of the TiS3 nanoribbons at ambient phase to be 1.321 × 10-6 K-1. The observed results are expected to be useful in calibration and performance of next-generation nanoelectronics and optical devices under extreme stress conditions.
Original language | English |
---|---|
Pages (from-to) | 8794-8802 |
Number of pages | 9 |
Journal | ACS Applied Nano Materials |
Volume | 3 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2020 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Keywords
- 2D semiconductors
- high pressure
- phonons
- Raman spectroscopy
- TiS