Random voids generation and effect of thermal shock load on mechanical reliability of light-emitting diode flip chip solder joints

Jiajie Fan*, Jie Wu, Changzhen Jiang, Hao Zhang, Mesfin Ibrahim, Liang Deng

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)
74 Downloads (Pure)

Abstract

To make the light-emitting diode (LED) more compact and effective, the flip chip solder joint is recommended in LED chip-scale packaging (CSP) with critical functions in mechanical support, heat dissipation, and electrical conductivity. However, the generation of voids always challenges the mechanical strength, thermal stability, and reliability of solder joints. This paper models the 3D random voids generation in the LED flip chip Sn96.5-Ag3.0-Cu0.5 (SAC305) solder joint, and investigates the effect of thermal shock load on its mechanical reliability with both simulations and experiments referring to the JEDEC thermal shock test standard (JESD22-A106B). The results reveal the following: (1) the void rate of the solder joint increases after thermal shock ageing, and its shear strength exponentially degrades. (2) the first principal stress of the solder joint is not obviously increased, however, if the through-hole voids emerged in the corner of solder joints, it will dramatically increase. (3) modelling of the fatigue failure of solder joint with randomly distributed voids utilizes the approximate model to estimate the lifetime, and the experimental results confirm that the absolute prediction error can be controlled around 2.84%.

Original languageEnglish
Article number94
JournalMaterials
Volume13
Issue number1
DOIs
Publication statusPublished - 2020

Keywords

  • Flip chip
  • Light-emitting diode
  • Randomly distributed voids
  • Reliability
  • Solder joint

Fingerprint

Dive into the research topics of 'Random voids generation and effect of thermal shock load on mechanical reliability of light-emitting diode flip chip solder joints'. Together they form a unique fingerprint.

Cite this