Rapid assessment of earthquake-induced building damage using remote sensing LiDAR data

Fatemeh Foroughnia*, Valentina Macchiarulo, Luis Berg, Matthew DeJong, Pietro Milillo, Kenneth W. Hudnut, Kenneth Gavin, Giorgia Giardina

*Corresponding author for this work

Research output: Contribution to conferenceAbstractScientific

3 Downloads (Pure)

Abstract

Earthquakes are natural hazards leading to the greatest human and economic losses, which are mostly due to structural collapses. Rapid identification and assessment of earthquake-induced damage to structures is therefore an essential component of the emergency response, and instrumental to effective reconstruction plans. Typically, structural damage assessment is conducted through building-by-building inspections during post-earthquake field reconnaissance missions. These missions are expensive and time-consuming, especially if large areas need to be investigated. Remote sensing techniques provide a relatively low-cost, wide-area alternative to in-situ monitoring. Classification and change detection based on pre- and post-event optical and synthetic aperture radar (SAR) satellite images are the most used approaches to detect damaged structures after earthquakes. However, these techniques only provide qualitative observations of collapsed or severely damaged structures. In this work, we present a new approach for the quantitative assessment of earthquake-induced structural damage based on displacement measurements acquired by Airborne Light Detection And Ranging (LiDAR). The approach is based on the integration between LiDAR-based observations and structural indicators of damage. The application to the analysis of 684 buildings affected by the 2014 Napa earthquake, in California, demonstrates a good agreement between the LiDAR-based results and independent in-situ observations. This work sets the basis for the innovative exploitation of remote sensing data in disaster management.
Original languageEnglish
Number of pages1
DOIs
Publication statusPublished - 2023
EventEGU General Assembly 2023 - Austria Center Vienna (ACV), Vienna, Austria
Duration: 23 Apr 202328 Apr 2023
https://meetingorganizer.copernicus.org/EGU23
https://www.egu23.eu/

Conference

ConferenceEGU General Assembly 2023
Country/TerritoryAustria
CityVienna
Period23/04/2328/04/23
Internet address

Fingerprint

Dive into the research topics of 'Rapid assessment of earthquake-induced building damage using remote sensing LiDAR data'. Together they form a unique fingerprint.

Cite this