TY - JOUR
T1 - Rapid screening and probabilistic estimation of the potential for CO2-EOR and associated geological CO2 storage in Colombian petroleum basins
AU - Angarita, Edgar Eduardo Yáñez
AU - Núñez-López, Vanessa
AU - Ramírez, Andrea Ramírez
AU - Monroy, Edgar Castillo
AU - Faaij, Andre
PY - 2022
Y1 - 2022
N2 - Estimating the oil recovery potential using CO2 (CO2-EOR) at a national level is resource-intensive at a scale that is not usually available. The aim of this study is two-fold: first, the potential for CO2 storage and enhanced oil recovery (EOR) in Colombia is evaluated; and, second, the results from two different calculation methods (stochastic and deterministic) are compared when there is lack of information for a quick screening of suitable oilfields. The deterministic approach is based on expert insight and data found in the literature; while, the stochastic uses statistical data from two different databases (commercial and simulation-based results) to run a Monte Carlo simulation. Potential estimates based on typical values from the literature (deterministic) results in 277 MMbbl (million barrels) of oil and 36 Mt (million tonnes) of CO2. In contrast, a probabilistic-based method using a wide simulation database (stochastic) provides higher values of 690 MMbbl of oil and 203 Mt of CO2. Results using simulation-based and commercial project data also show significant differences. The volume of CO2 injected, which affects the recovery factor, is usually 100% hydrocarbon pore volume (HCPV) in simulation, while commercial projects have nowadays regularly increased from 30% to exceed the 100% threshold. A combination of these approaches avoids a resource-intensive estimation process and effectively provides a more realistic picture of the feasibility of applying CO2-EOR technologies.
AB - Estimating the oil recovery potential using CO2 (CO2-EOR) at a national level is resource-intensive at a scale that is not usually available. The aim of this study is two-fold: first, the potential for CO2 storage and enhanced oil recovery (EOR) in Colombia is evaluated; and, second, the results from two different calculation methods (stochastic and deterministic) are compared when there is lack of information for a quick screening of suitable oilfields. The deterministic approach is based on expert insight and data found in the literature; while, the stochastic uses statistical data from two different databases (commercial and simulation-based results) to run a Monte Carlo simulation. Potential estimates based on typical values from the literature (deterministic) results in 277 MMbbl (million barrels) of oil and 36 Mt (million tonnes) of CO2. In contrast, a probabilistic-based method using a wide simulation database (stochastic) provides higher values of 690 MMbbl of oil and 203 Mt of CO2. Results using simulation-based and commercial project data also show significant differences. The volume of CO2 injected, which affects the recovery factor, is usually 100% hydrocarbon pore volume (HCPV) in simulation, while commercial projects have nowadays regularly increased from 30% to exceed the 100% threshold. A combination of these approaches avoids a resource-intensive estimation process and effectively provides a more realistic picture of the feasibility of applying CO2-EOR technologies.
UR - http://www.scopus.com/inward/record.url?scp=85125634038&partnerID=8YFLogxK
U2 - 10.1144/petgeo2020-110
DO - 10.1144/petgeo2020-110
M3 - Article
AN - SCOPUS:85125634038
SN - 1354-0793
VL - 28
JO - Petroleum Geoscience
JF - Petroleum Geoscience
IS - 1
M1 - petgeo2020-110
ER -