Rare Event Prediction for Enhanced Control System Reliability of AWE Systems

Sebastian Rapp, Roland Schmehl

Research output: Contribution to conferenceAbstractScientific

17 Downloads (Pure)


Reliable autonomous operation of Airborne Wind Energy (AWE) systems requires control algorithms that are able to attenuate the effect of stochastic disturbances on the control performance in continuously changing wind conditions. Assessing the stability and robustness of the control system is in general carried out using simplified system models where the real stochastic nature of the control problem is neglected. Therefore, a direct Monte Carlo approach is used in practice to increase the confidence in the control system’s reliability. However, this approach performs poorly if it is used to estimate the effect and the probability of rare events such as strong gusts. Statistically, these events are located at the tails of the underlying joint probability density function. Consequently, only a few samples leading to rare events can be identified in a reasonable amount of time which leads to a biased probability estimate. In addition, it is difficult to recognize and leverage patterns if only a small set of samples is available that lead to a violation of a critical control requirement
Original languageEnglish
Number of pages1
Publication statusPublished - 2019
Event8th international Airborne Wind Energy Conference (AWEC 2019) - University of Strathclyde, Glasgow, United Kingdom
Duration: 15 Oct 201916 Oct 2019
Conference number: 8


Conference8th international Airborne Wind Energy Conference (AWEC 2019)
Abbreviated titleAWEC 2019
Country/TerritoryUnited Kingdom
Internet address


Dive into the research topics of 'Rare Event Prediction for Enhanced Control System Reliability of AWE Systems'. Together they form a unique fingerprint.

Cite this