Rate-optimal estimation of mixed semimartingales

Carsten H. Chong, Thomas Delerue, Fabian Mies

Research output: Contribution to journalArticleScientificpeer-review

5 Downloads (Pure)

Abstract

Consider the sum Y = B + B(H) of a Brownian motion B and an independent fractional Brownian motion B(H) with Hurst parameter H ∈ (0, 1). Even though B(H) is not a semimartingale, it was shown by Cheridito (Bernoulli 7 (2001) 913–934) that Y is a semimartingale if H > 3/4. Moreover, Y is locally equivalent to B in this case, so H cannot be consistently estimated from local observations of Y. This paper pivots on another unexpected feature in this model: if B and B(H) become correlated, then Y will never be a semimartingale, and H can be identified, regardless of its value. This and other results will follow from a detailed statistical analysis of a more general class of processes called mixed semimartingales, which are semiparametric extensions of Y with stochastic volatility in both the martingale and the fractional component. In particular, we derive consistent estimators and feasible central limit theorems for all parameters and processes that can be identified from high-frequency observations. We further show that our estimators achieve optimal rates in a minimax sense.

Original languageEnglish
Pages (from-to)219-244
Number of pages26
JournalAnnals of Statistics
Volume53
Issue number1
DOIs
Publication statusPublished - 2025

Keywords

  • Central limit theorem
  • high-frequency observations
  • Hurst parameter
  • KL divergence
  • minimax rate
  • mixed fractional Brownian motion
  • rough noise

Fingerprint

Dive into the research topics of 'Rate-optimal estimation of mixed semimartingales'. Together they form a unique fingerprint.

Cite this