Re-entry Shape Optimisation Using the Axisymmetric Analogue Method with Modified Newtonian Technique Resolved Inviscid Flowfield

M. Brchnelová, E. Mooij

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

9 Downloads (Pure)

Abstract

Re-entry shape and trajectory optimisation studies typically require hundreds to thousands of flow solutions to resolve the heat transfer and skin friction. Due to the fact that full CFD simulations and even Euler simulations are typically very expensive, this work presents a development of a much simpler technique, in which the modified Newtonian approximation is coupled with the axisymmetric-analogue-based viscous method. Afterwards, the developed technique is applied to the shape optimisation study of the DART module originally conducted by Sudmeijer and Mooij in 2002. Large differences in heat fluxes are observed mainly owing to the fact that the present method estimates the transition region from approximate transition criteria while the original study assumes the transition point to be fixed at the interface between the cone and the flare. This emphasises the sensitivity of design optimisation studies on delicate parameters such as the location of transition, which typically cannot be accurately predicted during the conceptual phase. Finally, the limitations of the current method are identified and the areas in which the technique will be improved further are outlined.
Original languageEnglish
Title of host publicationAIAA Scitech 2021 Forum
Subtitle of host publication11–15 & 19–21 January 2021, Virtual Event
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Number of pages23
ISBN (Electronic)978-1-62410-609-5
DOIs
Publication statusPublished - 2021
EventAIAA Scitech 2021 Forum - Virtual/online event due to COVID-19
Duration: 11 Jan 202121 Jan 2021

Conference

ConferenceAIAA Scitech 2021 Forum
Period11/01/2121/01/21

Fingerprint Dive into the research topics of 'Re-entry Shape Optimisation Using the Axisymmetric Analogue Method with Modified Newtonian Technique Resolved Inviscid Flowfield'. Together they form a unique fingerprint.

Cite this