Receive/transmit aperture selection for 3D ultrasound imaging with a 2D matrix transducer

Moein Mozaffarzadeh*, Mehdi Soozande, Fabian Fool, Michiel A.P. Pertijs, Hendrik J. Vos, Martin D. Verweij, Johan G. Bosch, Nico de Jong

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
65 Downloads (Pure)

Abstract

Recently, we realized a prototype matrix transducer consisting of 48 rows of 80 elements on top of a tiled set of Application Specific Integrated Circuits (ASICs) implementing a row-level control connecting one transmit/receive channel to an arbitrary subset of elements per row. A fully sampled array data acquisition is implemented by a column-by-column (CBC) imaging scheme (80 transmit-receive shots) which achieves 250 volumes/second (V/s) at a pulse repetition frequency of 20 kHz. However, for several clinical applications such as carotid pulse wave imaging (CPWI), a volume rate of 1000 per second is needed. This allows only 20 transmit-receive shots per 3D image. In this study, we propose a shifting aperture scheme and investigate the effects of receive/transmit aperture size and aperture shifting step in the elevation direction. The row-level circuit is used to interconnect elements of a receive aperture in the elevation (row) direction. An angular weighting method is used to suppress the grating lobes caused by the enlargement of the effective elevation pitch of the array, as a result of element interconnection in the elevation direction. The effective aperture size, level of grating lobes, and resolution/sidelobes are used to select suitable reception/transmission parameters. Based on our assessment, the proposed imaging sequence is a full transmission (all 80 elements excited at the same time), a receive aperture size of 5 and an aperture shifting step of 3. Numerical results obtained at depths of 10, 15, and 20 mm show that, compared to the fully sampled array, the 1000 V/s is achieved at the expense of, on average, about two times wider point spread function and 4 dB higher clutter level. The resulting grating lobes were at -27 dB. The proposed imaging sequence can be used for carotid pulse wave imaging to generate an informative 3D arterial stiffness map, for cardiovascular disease assessment.

Original languageEnglish
Article number5300
Number of pages16
JournalApplied Sciences (Switzerland)
Volume10
Issue number15
DOIs
Publication statusPublished - 2020

Keywords

  • 2D matrix array
  • 3D ultrasound imaging
  • Carotid pulse wave imaging
  • Grating lobes reduc
  • High frame rate

Fingerprint

Dive into the research topics of 'Receive/transmit aperture selection for 3D ultrasound imaging with a 2D matrix transducer'. Together they form a unique fingerprint.

Cite this