Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods

Wenye Ji, Jin Chang, He Xiu Xu, Jian Rong Gao, Simon Gröblacher, H. Paul Urbach*, Aurèle J.L. Adam

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

2 Citations (Scopus)
30 Downloads (Pure)


As a two-dimensional planar material with low depth profile, a metasurface can generate non-classical phase distributions for the transmitted and reflected electromagnetic waves at its interface. Thus, it offers more flexibility to control the wave front. A traditional metasurface design process mainly adopts the forward prediction algorithm, such as Finite Difference Time Domain, combined with manual parameter optimization. However, such methods are time-consuming, and it is difficult to keep the practical meta-atom spectrum being consistent with the ideal one. In addition, since the periodic boundary condition is used in the meta-atom design process, while the aperiodic condition is used in the array simulation, the coupling between neighboring meta-atoms leads to inevitable inaccuracy. In this review, representative intelligent methods for metasurface design are introduced and discussed, including machine learning, physics-information neural network, and topology optimization method. We elaborate on the principle of each approach, analyze their advantages and limitations, and discuss their potential applications. We also summarize recent advances in enabled metasurfaces for quantum optics applications. In short, this paper highlights a promising direction for intelligent metasurface designs and applications for future quantum optics research and serves as an up-to-date reference for researchers in the metasurface and metamaterial fields.

Original languageEnglish
Article number169
Number of pages16
JournalLight: Science and Applications
Issue number1
Publication statusPublished - 2023

Cite this