Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries

Laura Iapichino, Alfio Quarteroni, Gianluigi Rozza*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

45 Citations (Scopus)

Abstract

The aim of this work is to solve parametrized partial differential equations in computational domains represented by networks of repetitive geometries by combining reduced basis and domain decomposition techniques. The main idea behind this approach is to compute once, locally and for few reference shapes, some representative finite element solutions for different values of the parameters and with a set of different suitable boundary conditions on the boundaries: these functions will represent the basis of a reduced space where the global solution is sought for. The continuity of the latter is assured by a classical domain decomposition approach. Test results on Poisson problem show the flexibility of the proposed method in which accuracy and computational time may be tuned by varying the number of reduced basis functions employed, or the set of boundary conditions used for defining locally the basis functions. The proposed approach simplifies the pre-computation of the reduced basis space by splitting the global problem into smaller local subproblems. Thanks to this feature, it allows dealing with arbitrarily complex network and features more flexibility than a classical global reduced basis approximation where the topology of the geometry is fixed.

Original languageEnglish
Pages (from-to)408-430
JournalComputers & Mathematics with Applications
Volume71
Issue number1
DOIs
Publication statusPublished - 2016

Keywords

  • Domain decomposition
  • Parametrized domains and networks
  • Parametrized PDEs
  • Reduced basis method

Fingerprint

Dive into the research topics of 'Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries'. Together they form a unique fingerprint.

Cite this