Regioselective aromatic hydroxylation of quinaldine by water using quinaldine 4-oxidase in recombinant Pseudomonas putida

SS Gaykawad, B Bühler, A Schmid

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)


Biocatalytic hydrocarbon oxyfunctionalizations are typically accomplished using oxygenases in living bacteria as biocatalysts. These processes are often limited by either oxygen mass transfer, cofactor regeneration, and/or enzyme instabilities due to the formation of reactive oxygen species. Here, we discuss an alternative approach based on molybdenum (Mo)-containing dehydrogenases, which produce, rather than consume, reducing equivalents in the course of substrate hydroxylation and use water as the oxygen donor. Mo-containing dehydrogenases have a high potential for overcoming limitations encountered with oxygenases. In order to evaluate the suitability and efficiency of a Mo-containing dehydrogenase-based biocatalyst, we investigated quinaldine 4-oxidase (Qox)-containing Pseudomonas strains and the conversion of quinaldine to 4-hydroxyquinaldine. Host strain and carbon source selection proved to be crucial factors influencing biocatalyst efficiency. Resting P. putida KT2440 (pKP1) cells, grown on and induced with benzoate, showed the highest Qox activity and were used for process development. To circumvent substrate and product toxicity/inhibition, a two-liquid phase approach was chosen. Without active aeration and with 1-dodecanol as organic carrier solvent a productivity of 0.4 g ltot−1 h−1 was achieved, leading to the accumulation of 2.1 g ltot−1 4-hydroxyquinaldine in 6 h. The process efficiency compares well with values reported for academic and industrially applied biocatalytic oxyfunctionalization processes emphasizing the potential and feasibility of the Qox-containing recombinant cells for heteroaromatic carbon oxyfunctionalizations without the necessity for active aeration.
Original languageEnglish
Pages (from-to)1067-1077
Number of pages11
JournalJournal of Industrial Microbiology and Biotechnology
Issue number8
Publication statusPublished - 2011


  • Biocatalysis
  • Pseudomonas putida
  • Molybdenum-containing dehydrogenase
  • Two-liquid phase
  • Resting cell biotransformation


Dive into the research topics of 'Regioselective aromatic hydroxylation of quinaldine by water using quinaldine 4-oxidase in recombinant Pseudomonas putida'. Together they form a unique fingerprint.

Cite this