Abstract
State of the art kernel diagnostic tools like DTrace and Systemtap provide a procedural interface for expressing analysis tasks. We argue that a relational interface to kernel data structures can offer complementary benefits for kernel diagnostics. This work contributes a method and an implementation for mapping a kernel's data structures to a relational interface. The Pico COllections Query Library (PiCO QL) Linux kernel module uses a domain specific language to define a relational representation of accessible Linux kernel data structures, a parser to analyze the definitions, and a compiler to implement an SQL interface to the data structures. It then evaluates queries written in SQL against the kernel's data structures. PiCO QL queries are interactive and type safe. Unlike SystemTap and DTrace, PiCO QL is less intrusive because it does not require kernel instrumentation; instead it hooks to existing kernel data structures through the module's source code. PiCO QL imposes no overhead when idle and needs only access to the kernel data structures that contain relevant information for answering the input queries. We demonstrate PiCO QL's usefulness by presenting Linux kernel queries that provide meaningful custom views of system resources and pinpoint issues, such as security vulnerabilities and performance problems.
Original language | English |
---|---|
Title of host publication | EuroSys 2014: Proceedings of the 9th European Conference on Computer Systems |
DOIs | |
Publication status | Published - 1 Jan 2014 |
Externally published | Yes |
Event | 9th ACM European Conference on Computer Systems, EuroSys 2014 - Amsterdam, Netherlands Duration: 14 Apr 2014 → 16 Apr 2014 |
Conference
Conference | 9th ACM European Conference on Computer Systems, EuroSys 2014 |
---|---|
Country/Territory | Netherlands |
City | Amsterdam |
Period | 14/04/14 → 16/04/14 |
Keywords
- Diagnostics
- Kernel
- SQL
- Unix