Relaxometry Guided Quantitative Cardiac Magnetic Resonance Image Reconstruction

Yidong Zhao*, Yi Zhang, Qian Tao

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

6 Downloads (Pure)

Abstract

Deep learning-based methods have achieved prestigious performance for magnetic resonance imaging (MRI) reconstruction, enabling fast imaging for many clinical applications. Previous methods employ convolutional networks to learn the image prior as the regularization term. In quantitative MRI, the physical model of nuclear magnetic resonance relaxometry is known, providing additional prior knowledge for image reconstruction. However, traditional reconstruction networks are limited to learning the spatial domain prior knowledge, ignoring the relaxometry prior. Therefore, we propose a relaxometry-guided quantitative MRI reconstruction framework to learn the spatial prior from data and the relaxometry prior from MRI physics. Additionally, we also evaluated the performance of two popular reconstruction backbones, namely, recurrent variational networks (RVN) and variational networks (VN) with U-Net. Experiments demonstrate that the proposed method achieves highly promising results in quantitative MRI reconstruction.

Original languageEnglish
Title of host publicationStatistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers - 14th International Workshop, STACOM 2023, Held in Conjunction with MICCAI 2023, Revised Selected Papers
EditorsOscar Camara, Esther Puyol-Antón, Avan Suinesiaputra, Alistair Young, Maxime Sermesant, Qian Tao, Chengyan Wang
PublisherSpringer
Pages349-358
ISBN (Print)978-3-031-52447-9
DOIs
Publication statusPublished - 2024
Event14th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2023 held in Conjunction with MICCAI 2023 - Vancouver, Canada
Duration: 12 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14507 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2023 held in Conjunction with MICCAI 2023
Country/TerritoryCanada
CityVancouver
Period12/10/2312/10/23

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Caridac MRI
  • Image reconstruction
  • Quantitative mapping
  • Relaxometry

Fingerprint

Dive into the research topics of 'Relaxometry Guided Quantitative Cardiac Magnetic Resonance Image Reconstruction'. Together they form a unique fingerprint.

Cite this