Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders

Zhihua Wang, José Humberto S. Almeida*, Luc St-Pierre, Zhonglai Wang, Saullo G.P. Castro

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

62 Citations (Scopus)
64 Downloads (Pure)

Abstract

A reliability-based optimization framework is introduced and used to design filament-wound cylindrical shells with variable angle tow. Seven design cases are investigated to enable a comparison between constant-stiffness and variable angle tow designs, also considering effects of thickness variation created due to overlapping tow paths, determined using the kinematics of the filament winding manufacturing process. The uncertainty in the winding angle is considered in the optimization by means of metamodels constructed using the Kriging method. Moving search windows are incorporated into the Kriging metamodel to accelerate its convergence by reducing the number of training iterations. The results prove the efficacy of the proposed framework and clearly demonstrate the advantage of variable-stiffness designs over conventional ones for achieving a maximum load carrying capacity, while keeping the robustness of the design towards manufacturing uncertainties.

Original languageEnglish
Article number112821
Number of pages14
JournalComposite Structures
Volume254
DOIs
Publication statusPublished - 15 Dec 2020

Keywords

  • Buckling
  • Filament winding
  • Kriging
  • Metamodeling
  • Reliability-based optimization
  • Uncertainty quantification

Fingerprint

Dive into the research topics of 'Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders'. Together they form a unique fingerprint.

Cite this