Abstract
Repetitive control (RC) has shown to achieve superior rejection of periodic disturbances. Many nonlinear systems are subject to repeating disturbances. The aim of this article is to develop a continuous-time RC design with stability guarantees for nonlinear Lur'e-type systems. Approximate output tracking is achieved by combining an internal model, consisting of a finite number of linear oscillators with frequencies at the reference frequency and at its multiples, with a stabilizer that guarantees a convergence property of the closed-loop system. The developed RC approach is applied to a nonlinear mechanical ventilation system for intensive care units (ICUs), which can be modeled as a Lur'e-type system. The experimental study confirms that the RC scheme is able to successfully follow the desired target pressure profile to properly support the ventilation needs of an adult patient.
Original language | English |
---|---|
Pages (from-to) | 1819-1829 |
Journal | IEEE Transactions on Control Systems Technology |
Volume | 31 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Circle criterion
- convergent systems
- harmonic regulation
- Lur'e-type system
- mechanical ventilation
- medical applications
- nonlinear output regulation
- repetitive control (RC)