Resonant Pumping of d-d Crystal Field Electronic Transitions as a Mechanism of Ultrafast Optical Control of the Exchange Interactions in Iron Oxides

R. V. Mikhaylovskiy*, T. J. Huisman, V. A. Gavrichkov, S. I. Polukeev, S. G. Ovchinnikov, D. Afanasiev, R. V. Pisarev, Th Rasing, A. V. Kimel

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

32 Citations (Scopus)
48 Downloads (Pure)

Abstract

The microscopic origin of ultrafast modification of the ratio between the symmetric (J) and antisymmetric (D) exchange interaction in antiferromagnetic iron oxides is revealed, using femtosecond laser excitation as a pump and terahertz emission spectroscopy as a probe. By tuning the photon energy of the laser pump pulse we show that the effect of light on the D/J ratio in two archetypical iron oxides FeBO3 and ErFeO3 is maximized when the photon energy is in resonance with a spin and parity forbidden d-d transition between the crystal-field split states of Fe3+ ions. The experimental findings are supported by a multielectron model, which accounts for the resonant absorption of photons by Fe3+ ions. Our results reveal the importance of the parity and spin-change forbidden, and therefore often underestimated, d-d transitions in ultrafast optical control of magnetism.

Original languageEnglish
Article number157201
Number of pages6
JournalPhysical Review Letters
Volume125
Issue number15
DOIs
Publication statusPublished - 2020

Fingerprint

Dive into the research topics of 'Resonant Pumping of d-d Crystal Field Electronic Transitions as a Mechanism of Ultrafast Optical Control of the Exchange Interactions in Iron Oxides'. Together they form a unique fingerprint.

Cite this