TY - JOUR
T1 - Review of energy-efficient train control and timetabling
AU - Scheepmaker, Gerben
AU - Goverde, Rob
AU - Kroon, Leo
PY - 2016/9/28
Y1 - 2016/9/28
N2 - The energy consumption of trains is highly efficient due to the low friction between steel wheels and rails, although the efficiency is also influenced largely by the driving strategy applied and the scheduled running times in the timetable. Optimal energy-efficient driving strategies can reduce operating costs significantly and contribute to a further increase of the sustainability of railway transportation. The railway sector hence shows an increasing interest in efficient algorithms for energy-efficient train control, which could be used in real-time Driver Advisory Systems (DAS) or Automatic Train Operation (ATO) systems. This paper gives an extensive literature review on energy-efficient train control (EETC) and the related topic of energy-efficient train timetabling (EETT), from the first simple models from the 1960s of a train running on a level track to the advanced models and algorithms of the last decade dealing with varying gradients and speed limits, and including regenerative braking. Pontryagin’s Maximum Principle (PMP) has been applied intensively to derive optimal driving regimes that make up the optimal energy-efficient driving strategy of a train under different conditions. Still, the optimal sequence and switching points of the optimal driving regimes are not trivial in general, which led to a wide range of optimization models and algorithms to compute the optimal train trajectories and more recently to use them to optimize timetables with a trade-off between energy efficiency and travel times.
AB - The energy consumption of trains is highly efficient due to the low friction between steel wheels and rails, although the efficiency is also influenced largely by the driving strategy applied and the scheduled running times in the timetable. Optimal energy-efficient driving strategies can reduce operating costs significantly and contribute to a further increase of the sustainability of railway transportation. The railway sector hence shows an increasing interest in efficient algorithms for energy-efficient train control, which could be used in real-time Driver Advisory Systems (DAS) or Automatic Train Operation (ATO) systems. This paper gives an extensive literature review on energy-efficient train control (EETC) and the related topic of energy-efficient train timetabling (EETT), from the first simple models from the 1960s of a train running on a level track to the advanced models and algorithms of the last decade dealing with varying gradients and speed limits, and including regenerative braking. Pontryagin’s Maximum Principle (PMP) has been applied intensively to derive optimal driving regimes that make up the optimal energy-efficient driving strategy of a train under different conditions. Still, the optimal sequence and switching points of the optimal driving regimes are not trivial in general, which led to a wide range of optimization models and algorithms to compute the optimal train trajectories and more recently to use them to optimize timetables with a trade-off between energy efficiency and travel times.
KW - Scheduling
KW - Timetabling
KW - Energy minimization
KW - Optimal train control
KW - Regenerative braking
UR - http://resolver.tudelft.nl/uuid:d8868c77-1167-4d80-82ed-c84d0a976a26
U2 - 10.1016/j.ejor.2016.09.044
DO - 10.1016/j.ejor.2016.09.044
M3 - Article
SN - 0377-2217
VL - 257
SP - 355
EP - 376
JO - European Journal of Operational Research
JF - European Journal of Operational Research
IS - 2
ER -