Abstract
High-viscosity modified asphalt (HVMA) is the most commonly applied method in drainage asphalt pavements. However, some disadvantages of hot-mix HVMA, including high energy consumption and unavoidable environmental pollution, should be improved. Therefore, warm-mix additive (WMA) was introduced. In this paper, the effects of WMA on the rheological and microstructural properties of HVMA were studied to select optimum WMA conditions. WMAs mainly include foam warm mix (1%, 3%, and 5%), Sasobit (1%, 3%, and 5%), Evotherm (0.4%, 0.8%, and 1.2%), and the newly introduced warm additive glow brand (GLWBR) (0.4%, 0.8%, and 1.2%). Dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests were performed on HVMA after rheological processes. Also, microstructural properties were examined by Fourier transform infrared spectroscopy and scanning electron microscopy methods. Based on the obtained results, all WMAs reduced the viscosity (135°C) of HVMA and achieved warm mixing effects. However, absolute viscosity (60°C) was enhanced by Sasobit and GLWBR. In addition, GLWBR improved high-temperature rheological performance and had no significant effect on the low-temperature and aging performance of HVMA. These findings were further verified by morphological observations.
Original language | English |
---|---|
Article number | 04023099 |
Number of pages | 14 |
Journal | Journal of Materials in Civil Engineering |
Volume | 35 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Funding
The work described in this paper is supported by the National Key R&D Program of China (Grant No. 2021YFB2601200), the Fundamental Research Funds for the Central Universities (B210202040), and the National Natural Science Foundation of China (51708177).Keywords
- Aging performance
- High-viscosity modified asphalt (HVMA)
- Morphological observation
- Physical properties
- Rheological properties