Abstract
Recent aerospace systems increasingly demand model-free controller synthesis, and autonomous operations require adaptability to uncertainties in partially observable environments. This paper applies distributional reinforcement learning to synthesize risk-sensitive, robust model-free policies for aerospace control. We investigate the use of distributional soft actor-critic (DSAC) agents for flight control and compare their learning characteristics and tracking performance with the soft actor-critic (SAC) algorithm. The results show that (1) the addition of distributional critics significantly improves learning consistency, (2) risk-averse agents increase flight safety by avoiding uncertainties in the environment.
Original language | English |
---|---|
Pages (from-to) | 2013-2018 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 56 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2023 |
Event | 22nd IFAC World Congress - Yokohama, Japan Duration: 9 Jul 2023 → 14 Jul 2023 |
Keywords
- Distributional reinforcement learning
- Guidance
- navigation and control of vehicles
- Reinforcement learning control
- Risk-sensitive learning