Robust Commutation Design: Applied to Switched Reluctance Motors

Max Van Meer, Gert Witvoet, Tom Oomen

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

Switched Reluctance Motors (SRMs) are cost-effective electric actuators that utilize magnetic reluctance to generate torque, with torque ripple arising from unaccounted manufacturing defects in the rotor tooth geometry. This paper aims to design a versatile, resource-efficient commutation function for accurate control of a range of SRMs, mitigating torque ripple despite manufacturing variations across SRMs and individual rotor teeth. The developed commutation function optimally distributes current between coils by leveraging the variance in the torque-current-angle model and is designed with few parameters for easy integration on affordable hardware. Monte Carlo simulations and experimental results show a tracking error reduction of up to 31% and 11%, respectively. The developed approach is beneficial for applications using a single driver for multiple systems and those constrained by memory or modeling effort, providing an economical solution for improved tracking performance and reduced acoustic noise.

Original languageEnglish
Title of host publicationProceedings of the European Control Conference, ECC 2024
PublisherIEEE
Pages2448-2453
Number of pages6
ISBN (Electronic)978-3-9071-4410-7
DOIs
Publication statusPublished - 2024
Event2024 European Control Conference, ECC 2024 - Stockholm, Sweden
Duration: 25 Jun 202428 Jun 2024

Conference

Conference2024 European Control Conference, ECC 2024
Country/TerritorySweden
CityStockholm
Period25/06/2428/06/24

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Robust Commutation Design: Applied to Switched Reluctance Motors'. Together they form a unique fingerprint.

Cite this