Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction

Kailun Yang, Recep Kas, Wilson A. Smith, Thomas Burdyny*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

165 Citations (Scopus)
123 Downloads (Pure)

Abstract

The deployment of gas diffusion electrodes (GDEs) for the electrochemical CO2 reduction reaction (CO2RR) has enabled current densities an order of magnitude greater than those of aqueous H cells. The gains in production, however, have come with stability challenges due to rapid flooding of GDEs, which frustrate both laboratory experiments and scale-up prospects. Here, we investigate the role of carbon gas diffusion layers (GDLs) in the advent of flooding during CO2RR, finding that applied potential plays a central role in the observed instabilities. Electrochemical characterization of carbon GDLs with and without catalysts suggests that the high overpotential required during electrochemical CO2RR initiates hydrogen evolution on the carbon GDL support. These potentials impact the wetting characteristics of the hydrophobic GDL, resulting in flooding that is independent of CO2RR. Findings from this work can be extended to any electrochemical reduction reaction using carbon-based GDEs (CORR or N2RR) with cathodic overpotentials of less than -0.65 V versus a reversible hydrogen electrode.

Original languageEnglish
Pages (from-to)33-40
JournalACS Energy Letters
Volume6
Issue number1
DOIs
Publication statusPublished - 2021

Fingerprint

Dive into the research topics of 'Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction'. Together they form a unique fingerprint.

Cite this