Safe & Intelligent Control: Hybrid and Distributional Reinforcement Learning for Automatic Flight Control

L. Vieira dos Santos, E. van Kampen

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

11 Downloads (Pure)

Abstract

The critical challenge for employing autonomous control systems in aircraft is ensuring robustness and safety. This study introduces an intelligent and fault-tolerant controller that merges two Reinforcement Learning (RL) algorithms in a hybrid approach: the Distributional Soft Actor-Critic (DSAC) and the Incremental Dual Heuristic Programming (IDHP). The integration combines the strengths of DSAC in learning a robust control strategy and IDHP in allowing real-time control adaption. Compared to earlier controllers, such as a hybrid using the Soft Actor-Critic (SAC) algorithm and strictly offline DSAC and SAC, our hybrid demonstrates enhanced robustness against changing flight conditions and in the face of sensor noise and bias. During fault tolerance tests, it maintains superior control even when the effectiveness of the aircraft’s ailerons and elevators is compromised. By demonstrating the potential of RL-based controllers to provide robustness and fault tolerance, this research advances the feasibility of safe and autonomous flight control operations.
Original languageEnglish
Title of host publicationProceedings of the AIAA SCITECH 2025 Forum
Number of pages19
ISBN (Electronic)978-1-62410-723-8
DOIs
Publication statusPublished - 2025
EventAIAA SCITECH 2025 Forum - Orlando, United States
Duration: 6 Jan 202510 Jan 2025

Conference

ConferenceAIAA SCITECH 2025 Forum
Country/TerritoryUnited States
CityOrlando
Period6/01/2510/01/25

Fingerprint

Dive into the research topics of 'Safe & Intelligent Control: Hybrid and Distributional Reinforcement Learning for Automatic Flight Control'. Together they form a unique fingerprint.

Cite this