SafeVRU: A research platform for the interaction of self-driving vehicles with vulnerable road users

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

30 Citations (Scopus)
92 Downloads (Pure)


This paper presents our research platform SafeVRU for the interaction of self-driving vehicles with Vulnerable Road Users (VRUs, i.e., pedestrians and cyclists). The paper details the design (implemented with a modular structure within ROS) of the full stack of vehicle localization, environment perception, motion planning, and control, with emphasis on the environment perception and planning modules. The environment perception detects the VRUs using a stereo camera and predicts their paths with Dynamic Bayesian Networks (DBNs), which can account for switching dynamics. The motion planner is based on model predictive contouring control (MPCC) and takes into account vehicle dynamics, control objectives (e.g., desired speed), and perceived environment (i.e., the predicted VRU paths with behavioral uncertainties) over a certain time horizon. We present simulation and real-world results to illustrate the ability of our vehicle to plan and execute collision-free trajectories in the presence of VRUs.
Original languageEnglish
Title of host publicationProceedings IEEE Symposium Intelligent Vehicles (IV 2019)
Place of PublicationPiscataway, NJ, USA
ISBN (Electronic)978-1-7281-0560-4
Publication statusPublished - 2019
EventIEEE Intelligent Vehicles Symposium 2019 - Paris, France
Duration: 9 Jun 201912 Jun 2019


ConferenceIEEE Intelligent Vehicles Symposium 2019
Abbreviated titleIV 2019

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


Dive into the research topics of 'SafeVRU: A research platform for the interaction of self-driving vehicles with vulnerable road users'. Together they form a unique fingerprint.

Cite this