Abstract
A novel magnetic 2D/2D heterogeneous structure MXene@NiFe-LDH@Fe3O4 was prepared for immobilization of laccase. In this work, two-dimensional MXene nanosheets with abundant surface functional groups were heterogeneously assembled with layered double hydroxide (LDH) by in situ co-precipitation method, and magnetic nanoparticle Fe3O4 with excellent biocompatibility and rapid separation of materials and substrates was introduced subsequently, and then silane coupling agent was coated on the surface of MXene@NiFe-LDH@Fe3O4. The functionalized MXene@NiFe-LDH@Fe3O4 was employed as a carrier to immobilize laccase from Trametes-Versicolor. The enzyme loading of the nanocomposite material is as high as 167.9 mg/g. Compared with free enzymes, the immobilized laccase showed a notable improvement in stability in a wider range of pHs (2.0–8.0), temperatures (25–60 °C), and organic solvent concentration (1–5 M). The reusability study suggested that after 7 cycles of repeated catalysis, the degradation efficiency could reach 55.5% for 2,4-dichlorophenol, 92.1% for bisphenol A and70.9% for pyrocatechol. The results provide a new carrier preparation strategy for the efficient immobilization of laccase.
| Original language | English |
|---|---|
| Article number | 130820 |
| Number of pages | 12 |
| Journal | Colloids and Surfaces A: Physicochemical and Engineering Aspects |
| Volume | 660 |
| DOIs | |
| Publication status | Published - 2023 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Keywords
- 2D nanomaterials
- Heterogeneous assembly
- Immobilized laccase
- Simulated industrial wastewater