Scaling Methodology Applied to Buckling of Sandwich Composite Cylindrical Shells

Ines Uriol Balbin, Chiara Bisagni, Marc R. Schultz, Mark W. Hilburger

Research output: Contribution to journalArticleScientificpeer-review

10 Citations (Scopus)

Abstract

Studying buckling behavior of large shell structures through full-scale test articles can be complex and expensive. Therefore, reduced-scale structures are often preferred for investigating buckling behavior. However, designing reduced-scale structures that are representative of the full-scale structure can be difficult. An analytical scaling methodology for compression-loaded sandwich composite cylindrical shells based on the nondimensionalization of the buckling equations is presented herein. The methodology was used to develop scaled configurations that show similar buckling responses to the full-scale baseline configuration. Finite element analysis results showed that both a baseline and a scaled configuration buckled similarly, when the nondimensional stiffness, defined as the ratio between the nondimensional load and nondimensional displacement, was matched between the different scale models. Limitations of the methodology are discussed and are believed to be a result of neglecting the flexural anisotropy and the transverse shear compliance. A preliminary material failure assessment for the different scales is also considered.
Original languageEnglish
Pages (from-to)3680-3689
Number of pages10
JournalAIAA Journal: devoted to aerospace research and development
Volume58
Issue number8
DOIs
Publication statusPublished - 1 Jan 2020

Fingerprint

Dive into the research topics of 'Scaling Methodology Applied to Buckling of Sandwich Composite Cylindrical Shells'. Together they form a unique fingerprint.

Cite this