Scenario Reduction with Guarantees for Stochastic Optimal Control of Linear Systems

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

Scenario reduction algorithms can be an effective means to provide a tractable description of the uncertainty in optimal control problems. However, they might significantly compromise the performance of the controlled system. In this paper, we propose a method to compensate for the effect of scenario reduction on stochastic optimal control problems for chance-constrained linear systems with additive uncertainty. We consider a setting in which the uncertainty has a discrete distribution, where the number of possible realizations is large. We then propose a reduction algorithm with a problem-dependent loss function, and we define sufficient conditions on the stochastic optimal control problem to ensure out-of-sample guarantees (i.e., against the original distribution of the uncertainty) for the controlled system in terms of performance and chance constraint satisfaction. Finally, we demonstrate the effectiveness of the approach on a numerical example.

Original languageEnglish
Title of host publicationProceedings of the European Control Conference, ECC 2024
PublisherIEEE
Pages3502-3508
Number of pages7
ISBN (Electronic)978-3-9071-4410-7
DOIs
Publication statusPublished - 2024
Event2024 European Control Conference, ECC 2024 - Stockholm, Sweden
Duration: 25 Jun 202428 Jun 2024

Conference

Conference2024 European Control Conference, ECC 2024
Country/TerritorySweden
CityStockholm
Period25/06/2428/06/24

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Scenario Reduction with Guarantees for Stochastic Optimal Control of Linear Systems'. Together they form a unique fingerprint.

Cite this