scTopoGAN: unsupervised manifold alignment of single-cell data

Akash Singh, Kirti Biharie, Marcel J.T. Reinders, Ahmed Mahfouz, Tamim Abdelaal*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

24 Downloads (Pure)

Abstract

Motivation: Single-cell technologies allow deep characterization of different molecular aspects of cells. Integrating these modalities provides a comprehensive view of cellular identity. Current integration methods rely on overlapping features or cells to link datasets measuring different modalities, limiting their application to experiments where different molecular layers are profiled in different subsets of cells. Results: We present scTopoGAN, a method for unsupervised manifold alignment of single-cell datasets with non-overlapping cells or features. We use topological autoencoders (topoAE) to obtain latent representations of each modality separately. A topology-guided Generative Adversarial Network then aligns these latent representations into a common space. We show that scTopoGAN outperforms state-of-the-art manifold alignment methods in complete unsupervised settings. Interestingly, the topoAE for individual modalities also showed better performance in preserving the original structure of the data in the low-dimensional representations when compared to other manifold projection methods. Taken together, we show that the concept of topology preservation might be a powerful tool to align multiple single modality datasets, unleashing the potential of multi-omic interpretations of cells.

Original languageEnglish
Article numbervbad171
Number of pages10
JournalBioinformatics Advances
Volume3
Issue number1
DOIs
Publication statusPublished - 2023

Funding

This project was supported by the NWO Gravitation project: BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012) and the NWO TTW project 3DOMICS (NWO: 17126).

Fingerprint

Dive into the research topics of 'scTopoGAN: unsupervised manifold alignment of single-cell data'. Together they form a unique fingerprint.

Cite this