Search-based task and motion planning for hybrid systems: Agile autonomous vehicles

Zlatan Ajanović*, Enrico Regolin, Barys Shyrokau, Hana Ćatić, Martin Horn, Antonella Ferrara

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)
42 Downloads (Pure)


To achieve optimal robot behavior in dynamic scenarios we need to consider complex dynamics in a predictive manner. In the vehicle dynamics community, it is well know that to achieve time-optimal driving on low friction surface, the vehicle should utilize drifting. Hence, many authors have devised rules to split circuits and employ drifting on some segments. These rules are suboptimal and do not generalize to arbitrary circuit shapes (e.g., S-like curves). So, the question “When to go into which mode and how to drive in it?” remains unanswered. To choose the suitable mode (discrete decision), the algorithm needs information about the feasibility of different modes (continuous motion). This makes it a class of Task and Motion Planning (TAMP) problems, which are known to be hard to solve optimally in real-time. In the AI planning community, search methods are commonly used. However, they cannot be directly applied to TAMP problems due to the continuous component. Here, we present a search-based method that effectively solves this problem and efficiently searches in a highly dimensional state space with nonlinear and unstable dynamics. The space of the possible trajectories is explored by sampling different combinations of motion primitives guided by the search. Our approach allows to use multiple locally approximated models to generate motion primitives (e.g., learned models of drifting) and effectively simplify the problem without losing accuracy. The algorithm performance is evaluated in simulated driving on a mixed-track with segments of different curvatures (right and left). Our code is available at

Original languageEnglish
Article number105893
Number of pages14
JournalEngineering Applications of Artificial Intelligence
Publication statusPublished - 2023


  • Autonomous vehicles
  • Behavior planning
  • Hybrid systems
  • Motion planning
  • Search
  • Task and motion planning


Dive into the research topics of 'Search-based task and motion planning for hybrid systems: Agile autonomous vehicles'. Together they form a unique fingerprint.

Cite this