Seismic velocity changes in the Groningen reservoir associated with distant drilling

Wen Zhou*, Hanneke Paulssen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
30 Downloads (Pure)

Abstract

In this study, we show that passively recorded data of nearby passing trains by a deep borehole geophone array could be linked to fluctuations of the gas-water contact in the Groningen reservoir in The Netherlands. During a period of 1.5 months, changes of inter-geophone P-wave travel times were detected by deconvolution interferometry of the recorded train signals. P-to-S converted waves, obtained by deconvolution of the horizontal component by the vertical component at individual geophones, showed simultaneous variations. The observed travel-time changes could be related to fluctuations of the gas-water contact in the observation well caused by pressure variations at a well drilling 4.5 km away. The ∼ 3.5 day delay between drilling in the reservoir and the seismic response yields a hydraulic diffusivity of approximately 5 m2/s and suggests that the pressure front is effectively propagated over such a long distance. Our observations illustrate that downhole geophone arrays can be used to monitor changes in the subsurface if repeating noise sources are available, and that unexpected effects may occur due to drilling.

Original languageEnglish
Article number17523
JournalScientific Reports
Volume12
Issue number1
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'Seismic velocity changes in the Groningen reservoir associated with distant drilling'. Together they form a unique fingerprint.

Cite this