TY - JOUR
T1 - Selecting south European wine based on carbon footprint
AU - Tsalidis, Georgios Archimidis
AU - Kryona, Zoi Panagiota
AU - Tsirliganis, Nestor
PY - 2022
Y1 - 2022
N2 - The largest wine producers globally are located in Southern Europe and climate is a major factor in wine production. The European Union aims to complement the consumer's choice for wine with information about environmental sustainability. The carbon footprint is a worldwide-standardized indicator that both wine producers and consumers perceive as the most important environmental indicator. So far, environmental life cycle assessment studies show variability in the system boundaries design and functional unit selection, and review papers do not include life cycle inventory data, and consider vineyards in various locations worldwide. This study aimed to investigate what are the key factors affecting the carbon footprint of red and white wine production in South European countries with the same climatic conditions, and benchmark both wine types. The results showed that the carbon footprints of white and red wines are comparable. The average carbon footprints were 1.02, 1.25, and 1.62 CO2 eq. bottle of wine −1 for organic red wine, conventional red wine, and conventional white wine, respectively. The viticulture, winemaking, and packaging stages affect greatly the carbon footprint. Diesel consumption at the viticulture stage, electricity consumption at the viticulture and winemaking stages, and glass production at the packaging stage are the largest contributors to the carbon footprint. Wine consumption stage was omitted from most studies, even though it can increase the carbon footprint by 5%. Our results suggest that consumers should choose (conventional or organic) red wine that is produced locally.
AB - The largest wine producers globally are located in Southern Europe and climate is a major factor in wine production. The European Union aims to complement the consumer's choice for wine with information about environmental sustainability. The carbon footprint is a worldwide-standardized indicator that both wine producers and consumers perceive as the most important environmental indicator. So far, environmental life cycle assessment studies show variability in the system boundaries design and functional unit selection, and review papers do not include life cycle inventory data, and consider vineyards in various locations worldwide. This study aimed to investigate what are the key factors affecting the carbon footprint of red and white wine production in South European countries with the same climatic conditions, and benchmark both wine types. The results showed that the carbon footprints of white and red wines are comparable. The average carbon footprints were 1.02, 1.25, and 1.62 CO2 eq. bottle of wine −1 for organic red wine, conventional red wine, and conventional white wine, respectively. The viticulture, winemaking, and packaging stages affect greatly the carbon footprint. Diesel consumption at the viticulture stage, electricity consumption at the viticulture and winemaking stages, and glass production at the packaging stage are the largest contributors to the carbon footprint. Wine consumption stage was omitted from most studies, even though it can increase the carbon footprint by 5%. Our results suggest that consumers should choose (conventional or organic) red wine that is produced locally.
KW - Greenhouse gas
KW - Organic
KW - Red wine
KW - Viticulture
KW - White wine
UR - http://www.scopus.com/inward/record.url?scp=85133244837&partnerID=8YFLogxK
U2 - 10.1016/j.resenv.2022.100066
DO - 10.1016/j.resenv.2022.100066
M3 - Review article
AN - SCOPUS:85133244837
SN - 2666-9161
VL - 9
JO - Resources, Environment and Sustainability
JF - Resources, Environment and Sustainability
M1 - 100066
ER -