Self-compacting high-performance fiber concrete for foundations: Part 1 -experimental verification and design considerations

Joost Walraven*, Didier Droogné, Steffen Grünewald, Luc Taerwe, Bogdan Cotovanu, John Rovers

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)
48 Downloads (Pure)

Abstract

An investigation is carried out into the applicability of self-compacting high-performance fiber concrete (HPFC) in foundations. A concrete mixture has been designed with a concrete cube strength of about 110 MPa. The concrete contains 60 kg/m3 steel fibers. The properties of the HPFC developed are very suitable for structural applications, especially because the post-cracking tensile strength, provided by the fibers, is higher than the axial tensile strength of the concrete so that hardening in tension occurs after crack formation, often characterized by multiple cracking. This not only results in a high bearing capacity but as well in substantial durability. As a potential application foundation elements are considered. Experiments have been carried out to determine the pre- and post-cracking strength properties, the shear resistance of short beams with loads near to the supports, the anchorage length of reinforcing bars, and the shear capacity of pile caps. The results of the tests are used for verification of the applicability of the general design rules for fiber concrete, as found in the fib Model Code 2010, to the HPFC developed. The HPFC developed is characterized by high strength and ductility, is durable and self-compacting. The research program showed that the design of structures with the HPFC considered can be based on existing design rules with some extensions.

Original languageEnglish
Pages (from-to)172-186
Number of pages15
JournalStructural Concrete
Volume23
Issue number1
DOIs
Publication statusPublished - 2021

Keywords

  • design recommendation
  • experiments
  • foundations
  • high performance fiber concrete
  • sustainable and durable

Fingerprint

Dive into the research topics of 'Self-compacting high-performance fiber concrete for foundations: Part 1 -experimental verification and design considerations'. Together they form a unique fingerprint.

Cite this