Self-healing asphalt for road pavements

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

104 Downloads (Pure)


This paper presents a unique self-healing system for asphalt pavement which employs compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are used to distribute the rejuvenator throughout the pavement mixture, thereby overcoming some of the problems associated with alternate asphalt pavement healing methods, i.e., spherical capsules and hollow fibres. The healing system performance, when embedded in Porous Asphalt (PA) mix was tested by employing: (i) Indirect Tensile Stiffness and Strength test (ii) 4 Point Bending Fatigue test. The Semi Circular Bend (SCB) test was adopted to study crack propagation and its closure (healing) in an asphalt mix. The findings demonstrate that compartmented alginate fibres have capacity to survive asphalt mixing and compaction process. The fibres can efficiently repair damage (close the cracks), increase asphalt mix stiffness and strength. However, when the asphalt mix is subjected to fatigue loading the system does not significantly improve healing properties of the asphalt mix. Nevertheless, the findings indicate that, with further enhancement, compartmented calcium alginate fibres may present a promising new approach for the development of self-healing asphalt pavement systems.
Original languageEnglish
Title of host publication4th International Conference on Service Life Design for Infrastructures
Subtitle of host publication(SLD4) 27-30 August 2018 – Delft, Netherlands
EditorsGuang Ye, Yong Yuan, Claudia Romero Rodriguez, Hongzhi Zhang, Branko Šavija
ISBN (Electronic)978-2-35158-213-8
Publication statusPublished - 2018
Event4th International Conference on Service
Life Design for Infrastructures
- Delft, Netherlands
Duration: 27 Aug 201830 Aug 2018
Conference number: 4

Publication series

NameRilem proceedings
NumberPRO 125


Conference4th International Conference on Service
Life Design for Infrastructures
Abbreviated titleSLD4

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


  • self-healing
  • alginate fibres
  • asphalt pavements
  • asphalt rejuvenation


Dive into the research topics of 'Self-healing asphalt for road pavements'. Together they form a unique fingerprint.

Cite this