TY - JOUR
T1 - Self-Organized Anodic Oxides on Titanium Alloys Prepared from Glycol- and Glycerol-Based Electrolytes
AU - Michalska-Domańska, M.E.
AU - Lazinska, Magdalena
AU - Lukasiewicz, Justyna
AU - Mol, J.M.C.
AU - Durejko, Tomasz
PY - 2020
Y1 - 2020
N2 - The anodization of commercially pure Ti alloy (99.5 wt %) and two biomedical titanium alloys, Ti6Al7Nb and Ti6Al4V, was performed, and the resulting anodic oxides were studied. The biomedical alloys were made by Laser Engineered Net Shaping. The glycol-based and glycerol-based electrolytes with 0.3 M ammonium fluoride and 2 wt % of deionized water content were tested. It was found that electrolyte type as well as the chemical composition of the base substrate affected the final morphology and chemical composition of the anodic oxide formed. A higher current density, ionic mobility, and oxide growth rate were obtained in glycol-based electrolyte as compared to those obtained in glycerol-based electrolyte for all tested alloys. A self-organized nanotubular and nanoporous morphology of the anodic oxide in both types of electrolyte was obtained. In each electrolyte, the alloy susceptibility to oxidation increased in the following order: Ti6Al4V < Ti 99.5% < Ti6Al7Nb, which can be correlated to the oxidation susceptibility of the base titanium alloy. It was observed that the more impurities/alloying elements in the substrate, the lower the pore diameters of anodic oxide. There was a higher observed incorporation of electrolyte species into the anodic oxide matrix in the glycerol-based electrolyte compared with that in glycol-based electrolyte
AB - The anodization of commercially pure Ti alloy (99.5 wt %) and two biomedical titanium alloys, Ti6Al7Nb and Ti6Al4V, was performed, and the resulting anodic oxides were studied. The biomedical alloys were made by Laser Engineered Net Shaping. The glycol-based and glycerol-based electrolytes with 0.3 M ammonium fluoride and 2 wt % of deionized water content were tested. It was found that electrolyte type as well as the chemical composition of the base substrate affected the final morphology and chemical composition of the anodic oxide formed. A higher current density, ionic mobility, and oxide growth rate were obtained in glycol-based electrolyte as compared to those obtained in glycerol-based electrolyte for all tested alloys. A self-organized nanotubular and nanoporous morphology of the anodic oxide in both types of electrolyte was obtained. In each electrolyte, the alloy susceptibility to oxidation increased in the following order: Ti6Al4V < Ti 99.5% < Ti6Al7Nb, which can be correlated to the oxidation susceptibility of the base titanium alloy. It was observed that the more impurities/alloying elements in the substrate, the lower the pore diameters of anodic oxide. There was a higher observed incorporation of electrolyte species into the anodic oxide matrix in the glycerol-based electrolyte compared with that in glycol-based electrolyte
KW - anodization
KW - biomedical alloys
KW - titanium anodic oxide
KW - electrolytes viscosity
KW - current density
KW - oxidation susceptibility
KW - ions incorporation
UR - http://www.scopus.com/inward/record.url?scp=85094114631&partnerID=8YFLogxK
U2 - 10.3390/ma13214743
DO - 10.3390/ma13214743
M3 - Article
SN - 1996-1944
VL - 13
JO - Materials
JF - Materials
IS - 21
M1 - 4743
ER -