Abstract
The development of a bubble plume from a vertical gas-evolving electrode is driven by buoyancy and hydrodynamic bubble dispersion. This canonical fluid mechanics problem is relevant for both thermal and electrochemical processes. We adopt a mixture model formulation for the two-phase flow, considering variable density (beyond Boussinesq), viscosity and hydrodynamic bubble dispersion. Introducing a new change of coordinates, inspired by the Lees–Dorodnitsyn transformation, we obtain a new self-similar solution for the laminar boundary layer equations. The results predict a wall gas fraction and gas plume thickness that increase with height to the power of 1/5 before asymptotically reaching unity and scaling with height to the power 2/5, respectively. The vertical velocity scales with height to the power of 3/5. Our analysis shows that self-similarity is only possible if gas conservation is entirely formulated in terms of the gas specific volume instead of the gas fraction.
Original language | English |
---|---|
Article number | A38 |
Number of pages | 18 |
Journal | Journal of Fluid Mechanics |
Volume | 996 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- buoyant boundary layers
- gas/liquid flow