TY - JOUR
T1 - Sequence-Based Filtering for Visual Route-Based Navigation
T2 - Analyzing the Benefits, Trade-Offs and Design Choices
AU - Tomita, Mihnea Alexandru
AU - Zaffar, M.
AU - Ferrarini, Bruno
AU - Milford, Michael J.
AU - McDonald-Maier, Klaus
AU - Ehsan, Shoaib
PY - 2022
Y1 - 2022
N2 - Visual Place Recognition (VPR) is the ability to correctly recall a previously visited place using visual information under environmental, viewpoint and appearance changes. An emerging trend in VPR is the use of sequence-based filtering methods on top of single-frame-based place matching techniques for route-based navigation. The combination leads to varying levels of potential place matching performance boosts at increased computational costs. This raises a number of interesting research questions: How does performance boost (due to sequential filtering) vary along the entire spectrum of single-frame-based matching methods? How does sequence matching length affect the performance curve? Which specific combinations provide a good trade-off between performance and computation? However, there is lack of previous work looking at these important questions and most of the sequence-based filtering work to date has been used without a systematic approach. To bridge this research gap, this paper conducts an in-depth investigation of the relationship between the performance of single-frame-based place matching techniques and the use of sequence-based filtering on top of those methods. It analyzes individual trade-offs, properties and limitations for different combinations of single-frame-based and sequential techniques. The experiments conducted in this study demonstrate the benefits of sequence-based filtering over the single-frame-based approach using various VPR techniques. We found that applying sequence-based filtering to a lightweight descriptor can enable higher VPR accuracy than state-of-the-art methods such as NetVLAD, while running in shorter time. For example, matching a sequence of 16 images, CALC descriptor outperforms NetVLAD on Campus Loop dataset while taking about 22% less time to perform VPR.
AB - Visual Place Recognition (VPR) is the ability to correctly recall a previously visited place using visual information under environmental, viewpoint and appearance changes. An emerging trend in VPR is the use of sequence-based filtering methods on top of single-frame-based place matching techniques for route-based navigation. The combination leads to varying levels of potential place matching performance boosts at increased computational costs. This raises a number of interesting research questions: How does performance boost (due to sequential filtering) vary along the entire spectrum of single-frame-based matching methods? How does sequence matching length affect the performance curve? Which specific combinations provide a good trade-off between performance and computation? However, there is lack of previous work looking at these important questions and most of the sequence-based filtering work to date has been used without a systematic approach. To bridge this research gap, this paper conducts an in-depth investigation of the relationship between the performance of single-frame-based place matching techniques and the use of sequence-based filtering on top of those methods. It analyzes individual trade-offs, properties and limitations for different combinations of single-frame-based and sequential techniques. The experiments conducted in this study demonstrate the benefits of sequence-based filtering over the single-frame-based approach using various VPR techniques. We found that applying sequence-based filtering to a lightweight descriptor can enable higher VPR accuracy than state-of-the-art methods such as NetVLAD, while running in shorter time. For example, matching a sequence of 16 images, CALC descriptor outperforms NetVLAD on Campus Loop dataset while taking about 22% less time to perform VPR.
KW - sequence-based filtering
KW - visual localization
KW - visual place recognition
UR - http://www.scopus.com/inward/record.url?scp=85135735679&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2022.3196389
DO - 10.1109/ACCESS.2022.3196389
M3 - Article
SN - 2169-3536
VL - 10
SP - 81974
EP - 81987
JO - IEEE Access
JF - IEEE Access
ER -