TY - JOUR
T1 - Setting bounds for in-plane shear induced fiber angle deviations in bi-axial non-crimp fabrics
AU - de Zeeuw, Chantal M.
AU - Peeters, Daniel M.J.
AU - Bergsma, Otto K.
AU - Benedictus, Rinze
PY - 2022
Y1 - 2022
N2 - For pick-and-place processes to become widely implemented in industry a consistent and acceptable product quality needs to be achieved. In the state of the art it is assumed that reinforcements will be in perfect condition at the start of forming or draping. In reality the handling process can already result in undesired deformations. The current work will look at fiber angle deviations that occur during this process due to in-plane shear. It is shown that bounds can be set for these fiber angle deviations based on experimental work. Periodic representative volume element homogenization is used to obtain homogenized material properties for a bi-axial non-crimp fabric with a specific construction. With these material properties the in-plane shear strain, and thus the fiber angle deviations, can be predicted. The presented methodology and results obtained using it can be a basis in the design process for automated handling of reinforcements and for in-situ quality control of the pick-and-place process.
AB - For pick-and-place processes to become widely implemented in industry a consistent and acceptable product quality needs to be achieved. In the state of the art it is assumed that reinforcements will be in perfect condition at the start of forming or draping. In reality the handling process can already result in undesired deformations. The current work will look at fiber angle deviations that occur during this process due to in-plane shear. It is shown that bounds can be set for these fiber angle deviations based on experimental work. Periodic representative volume element homogenization is used to obtain homogenized material properties for a bi-axial non-crimp fabric with a specific construction. With these material properties the in-plane shear strain, and thus the fiber angle deviations, can be predicted. The presented methodology and results obtained using it can be a basis in the design process for automated handling of reinforcements and for in-situ quality control of the pick-and-place process.
KW - composite fabrics
KW - composites
KW - high performance fabrics
KW - performance
KW - structure properties
KW - technical nonwoven fabrics
UR - http://www.scopus.com/inward/record.url?scp=85145194126&partnerID=8YFLogxK
U2 - 10.1177/15280837221113921
DO - 10.1177/15280837221113921
M3 - Article
AN - SCOPUS:85145194126
SN - 1528-0837
VL - 52
JO - Journal of Industrial Textiles
JF - Journal of Industrial Textiles
ER -