Abstract
Sparse Tucker Decomposition (STD) algorithms learn a core tensor and a group of factor matrices to obtain an optimal low-rank representation feature for the High-Order, High-Dimension, and Sparse Tensor (HOHDST). However, existing STD algorithms face the problem of intermediate variables explosion which results from the fact that the formation of those variables, i.e., matrices Khatri-Rao product, Kronecker product, and matrix-matrix multiplication, follows the whole elements in sparse tensor. The above problems prevent deep fusion of efficient computation and big data platforms. To overcome the bottleneck, a novel stochastic optimization strategy (SGD__Tucker) is proposed for STD which can automatically divide the high-dimension intermediate variables into small batches of intermediate matrices. Specifically, SGD__Tucker only follows the randomly selected small samples rather than the whole elements, while maintaining the overall accuracy and convergence rate. In practice, SGD__Tucker features the two distinct advancements over the state of the art. First, SGD__Tucker can prune the communication overhead for the core tensor in distributed settings. Second, the low data-dependence of SGD__Tucker enables fine-grained parallelization, which makes SGD__Tucker obtaining lower computational overheads with the same accuracy. Experimental results show that SGD__Tucker runs at least 2XX faster than the state of the art.
Original language | English |
---|---|
Article number | 9309187 |
Pages (from-to) | 1828-1841 |
Number of pages | 14 |
Journal | IEEE Transactions on Parallel and Distributed Systems |
Volume | 32 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- High-order, high-dimension and sparse tensor
- low-rank representation learning
- machine learning algorithm
- parallel strategy
- sparse tucker decomposition
- stochastic optimization