Shear-slip behaviour of prefabricated composite shear stud connectors in composite bridges

Yanmei Gao, Chengjun Li, Xuefei Wang, Zhixiang Zhou, Liang Fan, Junlin Heng

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

This paper has investigated the shear-slip behaviour of an innovative prefabricated composite shear stud (PCSS) connector and its application in the prefabricated steel–concrete composite bridges. A series of push-out tests are carried out on a total of 12 specimens, including 6 PCSS specimens and 6 conventional shear stud (CSS) specimens. Further comparison has been carried out between the test result and the data available from the literature. Based on the test, a high-resolution finite element (FE) analysis has been performed to reveal the load transfer mechanism of the PCSS connector at the component-level. After that, an advanced FE model has been established and validated by a full-scale test of the prefabricated composite bridge using the PCSS. With the FE model, the load-slip behaviour and slip distribution are investigated in details. The result highlights the enhanced shear capacity and ductility of the PCSS specimens compared with the CSS specimens, as well as the feasibility of PCSS connectors in composite bridges. Meanwhile, it is further revealed by the detailed investigation that the enhancement could be attributed to the lateral constraint on the concrete by the vertical steel plate in the PCSS. Besides, it is also found that the load-slip behaviour of composite bridges using the PCSS is influenced by the cracking at the seam between deck blocks. Consequently, abrupt changes can be found in the load-slip curve once the cracking occurs, which differs from the traditional composite bridges.

Original languageEnglish
Article number112148
Pages (from-to)1-16
Number of pages16
JournalEngineering Structures
Volume240
DOIs
Publication statusPublished - 2021

Bibliographical note

Accepted Author Manuscript

Keywords

  • High-resolution finite element analysis
  • Load-transfer mechanism
  • Prefabricated composite shear studs connector
  • Prefabricated steel–concrete composite bridge
  • Push-out test
  • Shear-slip behaviour

Fingerprint

Dive into the research topics of 'Shear-slip behaviour of prefabricated composite shear stud connectors in composite bridges'. Together they form a unique fingerprint.

Cite this