TY - JOUR
T1 - Shear thickening and history-dependent rheology of monodisperse suspensions with finite inertia via an immersed boundary lattice Boltzmann method
AU - Srinivasan, Sudharsan
AU - Van den Akker, Harry E.A.
AU - Shardt, Orest
N1 - Accepted Author Manuscript
PY - 2020
Y1 - 2020
N2 - Three-dimensional direct numerical simulations of dense suspensions of monodisperse spherical particles in simple shear flow have been performed at particle Reynolds numbers between 0.1 and 0.6. The particles translate and rotate under the influence of the applied shear. The lattice Boltzmann method was used to solve the flow of the interstitial Newtonian liquid, and an immersed boundary method was used to enforce the no-slip boundary condition at the surface of each particle. Short range spring forces were applied between colliding particles over sub-grid scale distances to prevent overlap. We computed the relative apparent viscosity for solids volume fractions up to 38% for several shear rates and particle concentrations and discuss the effects of these variables on particle rotation and cluster formations. The apparent viscosities increase with increasing particle Reynolds number (shear thickening) and solids fraction. As long as the particle Reynolds number is low (0.1), the computed viscosities are in good agreement with experimental measurements, as well as theoretical and empirical equations. For higher Reynolds numbers, we find much higher viscosities, which we relate to slower particle rotation and clustering. Simulations with a sudden change in shear rate also reveal a history (or hysteresis) effect due to the formation of clusters. We quantify the changes in particle rotation and clustering as a function of the Reynolds number and volume fraction.
AB - Three-dimensional direct numerical simulations of dense suspensions of monodisperse spherical particles in simple shear flow have been performed at particle Reynolds numbers between 0.1 and 0.6. The particles translate and rotate under the influence of the applied shear. The lattice Boltzmann method was used to solve the flow of the interstitial Newtonian liquid, and an immersed boundary method was used to enforce the no-slip boundary condition at the surface of each particle. Short range spring forces were applied between colliding particles over sub-grid scale distances to prevent overlap. We computed the relative apparent viscosity for solids volume fractions up to 38% for several shear rates and particle concentrations and discuss the effects of these variables on particle rotation and cluster formations. The apparent viscosities increase with increasing particle Reynolds number (shear thickening) and solids fraction. As long as the particle Reynolds number is low (0.1), the computed viscosities are in good agreement with experimental measurements, as well as theoretical and empirical equations. For higher Reynolds numbers, we find much higher viscosities, which we relate to slower particle rotation and clustering. Simulations with a sudden change in shear rate also reveal a history (or hysteresis) effect due to the formation of clusters. We quantify the changes in particle rotation and clustering as a function of the Reynolds number and volume fraction.
KW - Immersed boundary method
KW - Lattice Boltzmann method
KW - Rheology
KW - Shear flow
KW - Suspensions
UR - http://www.scopus.com/inward/record.url?scp=85078203801&partnerID=8YFLogxK
U2 - 10.1016/j.ijmultiphaseflow.2019.103205
DO - 10.1016/j.ijmultiphaseflow.2019.103205
M3 - Article
AN - SCOPUS:85078203801
SN - 0301-9322
VL - 125
JO - International Journal of Multiphase Flow
JF - International Journal of Multiphase Flow
M1 - 103205
ER -