TY - JOUR
T1 - Short-Term Nationwide Airport Throughput Prediction With Graph Attention Recurrent Neural Network
AU - Zhu, Xinting
AU - Lin, Yu
AU - He, Yuxin
AU - Tsui, Kwok Leung
AU - Chan, Pak Wai
AU - Li, Lishuai
PY - 2022
Y1 - 2022
N2 - With the dynamic air traffic demand and the constrained capacity resources, accurately predicting airport throughput is essential to ensure the efficiency and resilience of air traffic operations. Many research efforts have been made to predict traffic throughputs or flight delays at an airport or over a network. However, it is still a challenging problem due to the complex spatiotemporal dynamics of the highly interacted air transportation systems. To address this challenge, we propose a novel deep learning model, graph attention neural network stacking with a Long short-term memory unit (GAT-LSTM), to predict the short-term airport throughput over a national air traffic network. LSTM layers are included to extract the temporal correlations in the data, while the graph attention mechanism is used to capture the spatial dependencies. For the graph attention mechanism, two graph modeling methods, airport-based graph and OD-pair graph are explored in this study. We tested the proposed model using real-world air traffic data involving 65 major airports in China over 3 months in 2017 and compared its performance with other state-of-the-art models. Results showed that the temporal pattern was the dominate factor, compared to the spatial pattern, in predicting airport throughputs over an air traffic network. Among the prediction models that we compared, both the proposed model and LSTM performed well on prediction accuracy over the entire network. Better performance of the proposed model was observed when focusing on airports with larger throughputs. We also conducted an analysis on model interpretability. We found that spatiotemporal correlations in the data were learned and shown via the model parameters, which helped us to gain insights into the topology and the dynamics of the air traffic network.
AB - With the dynamic air traffic demand and the constrained capacity resources, accurately predicting airport throughput is essential to ensure the efficiency and resilience of air traffic operations. Many research efforts have been made to predict traffic throughputs or flight delays at an airport or over a network. However, it is still a challenging problem due to the complex spatiotemporal dynamics of the highly interacted air transportation systems. To address this challenge, we propose a novel deep learning model, graph attention neural network stacking with a Long short-term memory unit (GAT-LSTM), to predict the short-term airport throughput over a national air traffic network. LSTM layers are included to extract the temporal correlations in the data, while the graph attention mechanism is used to capture the spatial dependencies. For the graph attention mechanism, two graph modeling methods, airport-based graph and OD-pair graph are explored in this study. We tested the proposed model using real-world air traffic data involving 65 major airports in China over 3 months in 2017 and compared its performance with other state-of-the-art models. Results showed that the temporal pattern was the dominate factor, compared to the spatial pattern, in predicting airport throughputs over an air traffic network. Among the prediction models that we compared, both the proposed model and LSTM performed well on prediction accuracy over the entire network. Better performance of the proposed model was observed when focusing on airports with larger throughputs. We also conducted an analysis on model interpretability. We found that spatiotemporal correlations in the data were learned and shown via the model parameters, which helped us to gain insights into the topology and the dynamics of the air traffic network.
KW - air traffic network
KW - airport network
KW - complex network
KW - deep learning
KW - graph neural network
KW - throughput prediction
UR - http://www.scopus.com/inward/record.url?scp=85133408019&partnerID=8YFLogxK
U2 - 10.3389/frai.2022.884485
DO - 10.3389/frai.2022.884485
M3 - Article
AN - SCOPUS:85133408019
SN - 2624-8212
VL - 5
JO - Frontiers in Artificial Intelligence
JF - Frontiers in Artificial Intelligence
M1 - 884485
ER -